Регулятор скорости вращения вентилятора: виды устройства и правила подключения

Как подключить?

Выполнить подключение контроллера скорости к вентилятору можно своими руками. Для этого необходимо внимательно прочитать инструкцию и соблюдать ряд мер безопасности при работе с электроприборами. В зависимости от вида конструкции и вида обслуживаемых вентиляторов, контроллеры могут быть установлены на стене, внутри стены, внутри вентустановки или в отдельно стоящем шкафу системы «умный дом». Настенный и внутристенный регуляторы закрепляются при помощи шурупов или дюбелей, в зависимости от габаритов и веса устройства. Крепёжные элементы обычно входят в комплект наряду со схемой подключения прибора.

Схемы подключения у моделей могут отличаться, однако, общие закономерности и последовательность выполнения действий всё же есть. Вначале контроллер нужно подключить к кабелю, подающему ток на вентилятор. Основной целью данного этапа является разделение проводов «фаза», «ноль» и «земля». Затем выполняют подсоединение проводов к входным и выходным клеммам. Главное при этом — не перепутать провода местами и выполнить подключение согласно инструкции. Кроме того, следует проконтролировать, чтобы размер сечения кабеля питания и соединения соответствовал максимально разрешённому напряжению подключаемого устройства.

При подключении регулятора скорости к вентиляторам ноутбука напряжением 12 вольт необходимо выяснить предельно допустимые температуры деталей устройства. Иначе можно лишиться компьютера, у которого от перегрева выйдут из строя процессор, материнская плата и графическая карта. При подключении контроллера к оргтехнике необходимо также строго следовать инструкции. При необходимости подключения сразу нескольких вентиляторов лучше приобрести многоканальный регулятор, так как некоторые модели способны обслуживать до четырёх вентиляторов одновременно.

Регуляторы скорости вентиляторов являются важным многофункциональными устройством. Они защищают технику от перегрева, продлевают срок эксплуатации электрических двигателей вентиляторов, экономят электроэнергию и существенно понижают уровень шума в помещениях. Благодаря своей эффективности и практичности приборы обретают всё большую популярность и растущий потребительский спрос.

О том, как своими руками сделать регулятор скорости вентилятора, смотрите далее.

Источник

Почему нельзя регулировать скорость вращения вентилятора диммером

Для регулирования скорости вращения однофазных электродвигателей на напряжение питания 220 В применяются симисторные регуляторы скорости вращения.

Диммер (симисторный светорегулятор), в свою очередь, разработан для управления резистивной нагрузкой и должен применяется только как регулятор яркости свечения ламп.

В паспортах и руководствах по эксплуатации обычно есть указание на недопустимость использования диммера для управления двигателем.

Например, в описании диммера 300W фирмы Eljo (Швеция) указано: индуктивная и емкостная нагрузка (обычные трансформаторы, флуоресцентные лампы и электродвигатели) не могут работать с данными диммерами.

Различия в схемах управления:

В диммерах и симисторных регуляторах скорости применены близкие схемы управления. Обе используют принцип фазового управления, когда изменяется момент включения симистора относительно перехода сетевого напряжения через ноль. Для простоты обычно говорят, что изменяется выходное напряжение.

Схема симисторного регулятора отличается от схемы диммера в следующем:

· Установлен нижний порог напряжения подаваемого на двигатель вентилятора

· Мощность симистора выбирается так, чтобы его максимальный рабочий ток превышал рабочий ток вентилятора не менее, чем в 4 раза. При резистивной нагрузке в 2 А достаточно взять симистор также на 2 А.

· Предохранитель подбирается исходя из мощности электродвигателя. Обычно максимальный ток предохранителя должен быть на 20% больше рабочего тока двигателя.

· Для более правильного формирования синусоиды установлен дополнительный фазосдвигающий демпфирующий конденсатор.

· Для уменьшения сетевых помех используется дополнительный конденсатор помехоподавления

Для чего это необходимо:

1. Вращающий момент асинхронного двигателя падает пропорционально квадрату подаваемого напряжения. При достижении нижнего порога по напряжению двигатель может не запуститься. Для однофазных осевых и канальных вентиляторов нижним значением являются 40-60 В.

Ввиду того, что двигатель не вращаясь, все равно потребляет ток, обмотки вентилятора начинают нагреваться. Двигатель начинает издавать характерный звук (гудеть). В результате, если двигатель не оснащен надежной внутренней термозащитой, перегорает в течение часа.

В симисторных регуляторах, минимальное напряжение, подаваемое на вентилятор, устанавливается на заводе-изготовителе. Обычно это 80-100 В. Это гарантирует нормальную работу вентилятора при низких напряжениях.

2. При запуске двигатель кратковременно потребляет ток, в 6-7 раз больше максимального рабочего (пусковой ток). Для надежной работы при пуске двигателя применяется симистор с большим рабочим током.

3. Для правильной защиты двигателя от перегрузки по току (повышенное напряжение сети, перегрев подшипников и т.п.) величина максимального тока предохранителя должна быть подобрана по типу двигателя. Для симисторных регуляторов это значение на 15-20% выше максимального тока двигателя.

4. При подаче уменьшенного напряжения мощность двигателя падает и ротор начинает проскальзывать относительно поля статора. При определенных оборотах происходит фазовый сдвиг и двигатель начинает кратковременно потреблять ток выше, чем максимальный рабочий. Для недопущения такой ситуации в схему симисторного регулятора устанавливается дополнительный демпфирующий конденсатор и более мощный симистор.

5. Форма синусоиды при фазовом регулировании индуктивной нагрузки более сложна, чем при управлении активной нагрузкой, поэтому необходим дополнительный конденсатор подавляющий высокочастотный спектр помех. Диммер, управляющий вентилятором, может создавать помехи видимые на экране компьютера или телевизора.

Нередко в домашнем хозяйстве требуется установка регулятора скорости вращения вентилятора. Сразу следует отметить, что обычный диммер для регулировки яркости освещения не подойдет для вентилятора

Современному электродвигателю, особенно асинхронному, важно иметь на входе правильной формы синусоиду, но обычные диммеры для освещения искажают ее довольно сильно. Для эффективной и правильной организации регулировки скорости вентиляторов необходимо:

  1. Использовать специальные регуляторы, предназначенные для вентиляторов.
  2. Учитывайте, что эффективно и безопасно регулировке поддаются только специальные модели асинхронных электромоторов, поэтому перед покупкой узнавайте из технических характеристик о возможности регулировки числа оборотов методом понижения напряжения.

Для чего нужны регуляторы скорости вентилятора?

У некоторых владельцев частных домов и квартир возникает вопрос, как уменьшить обороты вентилятора вытяжки. Для начала разберемся, зачем это нужно. Обычно скорость вращения сокращают для уменьшения шума от прибора и экономии электроэнергии. Но стоит помнить, что подобные действия приведут к снижению производительности, что не лучшим образом отразится на микроклимате в помещении.

Если вентилятор постоянно работает на максимальной скорости, то быстро вырабатывает свой ресурс. Для продления срока эксплуатации, экономии электроэнергии и уменьшения шума устанавливают специальное оборудование, которое позволяет регулировать частоту вращения.

Разновидности регуляторов

Существует несколько разновидностей регуляторов:

  1. Тиристорный контроллер используют в однофазном оборудовании. Его преимущество в дополнительной защите корпуса от перегревания.
  2. Для мощных вентиляторов выбирают трансформаторный регулятор. В продаже есть однофазные и трехфазные разновидности. Основное достоинство заключается в возможности одновременной регулировки мощности сразу нескольких приборов. Еще один плюс состоит в плавном уменьшении скорости.
  3. Некоторые домашние мастера используют частотные или электронные контроллеры.
  4. Симисторный регулятор применяют чаще, потому что он подходит для одновременной регулировки мощности сразу нескольких моторов. Его плюс заключается в бесшумной работе.
  5. Для функционирования в диапазоне от 0 до 480 Вольт подходит частотный контроллер. Его используют в комплексе с трехфазным двигателем, имеющим мощность не больше 75 тысяч Вт.

Сборка регулятора своими руками

Для самостоятельного изготовления регулятора понадобятся обычный и переменный резисторы, а также транзистор.

Последовательность изготовления:

  • Для начала базу транзистора припаивают к среднему контакту резистора переменного типа. Его коллектор прикрепляют к внешнему выходу.
  • Ко второму краю резистора переменной разновидности припаивают второй обычный резистор. Мастера берут модель с сопротивлением 1 тысяча Ом.
  • Второй выход резистора соединяют пайкой с транзисторным эмиттером.
  • Провод, по которому происходит подача напряжения, припаивают к транзистору. Его положительный выход крепят к эмиттеру резистора переменной разновидности.
  • Самодельный прибор присоединяют к вентилятору для проверки работоспособности. Для этого положительный провод устройства соединяют с проводкой, идущей от эмиттера. Кабели подачи напряжения подключают к блоку питания.
  • Минусовой провод подсоединяют напрямую. Для проверки эффективности работы колесо переменного резистора крутят вручную и отслеживают изменение частоты вращения лопастей.
  • Если требуется, один контроллер синхронизируют с работой сразу двух канальных вентиляторов.

Эффективность вытяжной вентиляции во многом зависит от правильного выбора канального вентиляционного оборудования. При подборе подходящей модели учитывают нормативные требования, условия эксплуатации, необходимую производительность, габариты и материал изготовления.

Сборка регуляторов вращения кулера

Сегодня мы рассмотрим три интересные схемы для регулятора скорости вентилятора – одна обычная, вторая с термодатчиком и третья для уменьшения шума.

Не будем томить и сразу приступим к делу.

Обычная схема для регулятора оборотов кулера

Эта схема обеспечивает регулировку скорости вентилятора без контроля оборотов.

Схема размещается прямо внутри блока питания и имеет дополнительные посадочные места для подключения внешних датчиков, также есть возможность добавить стабилитрон, что будет ограничивать минимальное напряжение вентилятора.

Вот все комплектующие, что вам понадобятся для сборки этой схемы:

  • Биполярные транзисторы;
  • Стабилитрон;
  • Диод;
  • Электролитический конденсатор;
  • 8 резисторов;
  • Терморезистор;
  • Сам вентилятор;

А вот и сама схема:

Схема регулятора оборотов кулера с термодатчиков

Вентилятор в блоках питания вращается с постоянной скоростью, она не зависит от температуры высоковольтных резисторов, что вентилятор должен охлаждать.

Как правило, блок питания всегда подаёт на вентилятор мощность, необходимую для поддержания этой скорости.

Блоки питания, что ставятся в компьютеры, выбираются с запасом даже при максимуме энергопотребления. Соответственно, блок питания работает не на всю и высоковольтные резисторы не сильно нагреваются.

Поэтому кулер впустую гоняет воздух и поднимает пыль внутри компьютера.

Решить эту проблему поможет автоматический регулятор частоты оборотов вентилятора с термодатчиком, чья схема располагается ниже.

Список радиодеталей, что понадобится вам при сборке:

  • Два биполярных транзистора;
  • Четыре диода;
  • Два резистора;
  • Ну и сам вентилятор;

Датчиком в этом регуляторе служат германиевые диоды VD1-VD4.

Этот выбор обусловлен рядом плюсов германиевых диодов перед терморезисторами. Во-первых, зависимость обратного тока у них более выражена, чем у тех же терморезисторов, а во-вторых, стеклянный корпус диодов позволяет обойтись без диэлектрических прокладок.

Резистор R1 нужен для исключения возможности поломки транзисторов VT1 и VT2, в случае теплового пробоя диодов. Сопротивление резистора выбирается из максимально допустимого значения тока базы VT1.

Резистор R2 в свою очередь определяет порог, когда вентилятор должен сработать.

Устройство вставляется напрямую в блок питания.

Выводы диодов спаиваются вместе, после чего приклеиваются к теплоотводу высоковольтных транзисторов с обратной стороны. К выводам транзистора VT2 припаиваются резисторы R1 и R2, а также транзистор VT1.

Сам же транзистор VT2 устанавливается эмиттером в отверстие «cooler», что находится на плате блока питания.

При настройке регулятора, что происходит в основном в подстройке резистора R2 и выбору подходящего количества диодов.

Настраивая резистор R2, вам необходимо подобрать сопротивление введенной части, чтобы при номинальной нагрузке кулер крутился с небольшой скоростью.

Также вам нужно добиться, чтобы при подаче питания вентилятор вращался с небольшой частотой (если слишком быстро вращается – уменьшите количество диодов, если не вращается – увеличьте).

Рекомендую следующее видео, в котором автор самостоятельно изготавливает регулятор скорости вращения компьютерного вентилятора:

Популярные схемы, использующие снижение величины напряжения

Главное достоинство таких контроллеров – невысокая стоимость, что позволяет применять их в быту. Недостаток – слабая экономичность. При снижении оборотов уменьшается только шум, потребление электроэнергии фактически не меняется. Еще один недостаток – невозможность подключения мощных устройств, но для бытового использования это не критично.

Варианты схемных решений контроллеров:

  • ступенчатые регуляторы, с применением автотрансформатора;
  • автотрансформаторы с электронным управлением;
  • симисторные или тиристорные контроллеры.

ВНИМАНИЕ! При использовании регулятора скорости, необходимо устанавливать вентилятор с мощностью несколько выше той, на которую рассчитано помещение. Это продлит срок его эксплуатации

Ступенчатое управление с применением автотрансформатора

Принцип работы этого контроллера состоит в следующем. На вход автотрансформатора Т1 подается питающее напряжение 220 В. Обмотка имеет несколько ответвлений от части витков. При подключении нагрузки к ответвлениям, потребитель получает уменьшенное напряжение питания. С помощью переключателя SW1 мотор вентилятора M подключается к нужной части обмотки и скорость его вращения меняется. При понижении питающего напряжения снижается потребление электроэнергии. Сигнал на выходе – чистая синусоида, что благотворно влияет на состояние обмотки двигателя. Недостатком является большой размер блока управления. Ручка регулировки имеет ступенчатую шкалу, как правило, не более пяти положений. Плавно управлять скоростью вращения невозможно.

Автотрансформатор с электронным управлением

Электронный автотрансформатор работает по принципу широтно-импульсной модуляции. Транзисторная схема, модулируя импульсы – плавно изменяет выходное напряжение.  Достоинства такого контроллера – компактные размеры и невысокая стоимость. Недостаток –длина кабеля от контроллера до мотора ограничена. Поэтому блок автотрансформатора, как правило, выполнен в отдельном корпусе от ручки управления и располагается в непосредственной близости к вентилятору.

Симисторный (тиристорный) контроллер

Не вдаваясь в подробности принципа фазного управления, по которому работают регуляторы этого типа, вкратце опишем схему. Каждый тиристор «срезает» полуволну переменного тока, уменьшая выходное напряжение. Величина регулируется при помощи блока управления. Достоинства– низкая цена, компактные размеры. Обороты можно регулировать практически от ноля. Недостаток – искрение обмотки двигателя, ограниченная мощность нагрузки.

ВАЖНО!

  1. Двигатель вентилятора должен иметь автоматическую термозащиту.
  2. Недопустимо применять в качестве регулятора скорости вентилятора диммеры для осветительных приборов.

Трехфазный регулятор мощности своими руками

Из-за проблемы с электричеством люди все чаще покупают регуляторы мощности.

Не секрет, что резкие перепады, а также чрезмерно пониженное или повышенное напряжение пагубно влияют на бытовые приборы.

Для того чтобы не допустить порчи имущества, необходимо пользоваться регулятором напряжения, который защитит от короткого замыкания и различных негативных факторов электронные приборы.

Типы регуляторов

В наше время на рынке можно увидеть огромное количество различных регуляторов как для всего дома, так и маломощных отдельных бытовых приборов.

Существуют транзисторные регуляторы напряжения, тиристорные, механические (регулировка напряжения осуществляется при помощи механического бегунка с графитовым стержнем на конце). Но самым распространенным является симисторный регулятор напряжения. Основой этого прибора являются симисторы, которые позволяют резко среагировать на скачки напряжения и сгладить их.

Симистор представляет собой элемент, который содержит пять p-n переходов. Этот радиоэлемент имеет возможность пропускать ток как в прямом направлении, так и в обратном.

Эти компоненты можно наблюдать в различной бытовой технике начиная от фенов и настольных ламп и заканчивая паяльниками, где необходима плавная регулировка.

Принцип работы

Принцип работы симистора довольно прост. Это своего рода электронный ключ, который то закрывает двери, то открывает их с заданной частотой.

При открытии P-N перехода симистора он пропускает небольшую часть полуволны и потребитель получает только часть номинальной мощности.

То есть чем больше открывается P-N переход, тем больше мощности получает потребитель.

К достоинствам этого элемента можно отнести:

  • Симисторы довольно долговечны, так как в них отсутствуют механические контакты.
  • Из-за отсутствия механической составляющей отсутствует искрообразование.
  • В моменты нулевого сетевого тока симистор может проводить коммутацию, что тем самым снижает количество помех и обеспечивает высокую точность работы схемы.

В связи с вышесказанными достоинствами симисторы и регуляторы на их основе используются довольно часто.

Распространенные модели

Существуют модели готовых регуляторов мощности. Одним из представителей является модель РМ-2. Довольно простая модель и недорогая модель. Цена колеблется от 1300 до 1500 р.

Прибор рассчитан на напряжение от 30 до 400 В. А также есть возможность использовать как в домашних условиях, так и на производстве.

Как правило, прибор применяют для регулировки температуры различного электронагревательного оборудования.

Следующей модификацией будет модель РМ 2 16А.

Задачей РМ 2 16 А, является изменение уровня освещения и управление вращением двигателей различного типа.

Входное напряжение не должно превышать 400 В, а нагрузка 16А. Цена этого аппарата может обойтись в 2300 рублей.

Модель РНЭ-1 нашла свое применение в бытовых условиях: для регулировки нагрева паяльника, изменение яркости ламп (использование в качестве диммера), а также с успехом можно подключить обогреватели и регулировать температуру. В конструкцию прибора входит защита от короткого замыкания, которая представлена в виде плавкого предохранителя. При чрезмерном перегреве срабатывает термозащита и регулятор останавливает подачу энергии к прибору. После остывания прибор вновь можно включить и эксплуатировать дальше. Небольшая цена является довольно весомым плюсом и составляет 1200 рублей.

Если покупатель обладает знаниями в области радиоэлектроники, то можно собрать регулятор тока своими руками, и модель NF будет лучшим выбором.

В комплект входят печатная плата из фольгированного стеклотекстолита, различные электронные компоненты.

Цена этой модели колеблется от 900 до 1100 рублей.

Схемы на основе симистора

Если по каким-то причинам нет возможности приобрести готовый регулятор мощности, то его вполне можно сделать своими руками. Заранее необходимо определиться, для какого электроприбора он будет изготовлен.

Зачастую при покупке обычного паяльника температура его настолько велика, что возможны отслоения дорожек на печатных платах, а также порча радиокомпонентов. Вот одна из схем регулятора мощности на симисторе.

Следующее поколение – электронный диммер

Принципиальной разницы в подходе нет. Остатки мощности по-прежнему уходит в атмосферу в виде тепла. То есть, приглушая яркость освещения, вы не экономите электроэнергию, а лишь добавляете комфорта.

Однако электронные диммеры работают по бесконтактному методу, точнее движок переменного резистора вынесен в слаботочную зону. Больше нет искрящего шкрябания по виткам проволоки, маломощный резистор управляет электронным ключом – тиристором. Мощность (напряжение) снижается в полупроводниковом кристалле, плавно и точно. Лишняя энергия рассеивается через радиатор. Есть разные схемы электронных диммеров, наиболее дорогие построены на симисторах. Такие приборы немного экономят электроэнергию, до 20%. Учитывая изначально высокую стоимость качественных регуляторов – покупать их стоит лишь для обеспечения комфорта.

На современных диммерах ручка-крутилка практически не используется. Поскольку вся схема электронная – применяются сенсоры.

Есть и регуляторы с дистанционным пультом. Как подключить такой диммер? Никаких особенных схем. Регулятор устанавливается вместо выключателя, или после него. Комнатные устройства имеют такой-же форм фактор, как и остальные коммутационные приборы: розетки, выключатели. Самый востребованный вариант – клавиша и регулятор в одном корпусе.

Устройство системы

Коллекторный тип двигателя состоит главным образом из ротора, статора, а также щёток и тахогенератора.

  1. Ротор — это часть вращения, статор — это внешний по типу магнит.
  2. Щётки, которые произведены из графита — это главная часть скользящего контакта, через которую на вращающийся якорь и стоит подавать напряжение.
  3. Тахогенератор —это устройство, которое производит слежку за характеристикой вращения прибора. Если происходит нарушение в размеренности процесса вращения, то он корректирует поступающий в двигатель уровень напряжения, тем самым делая его наиболее плавным и медленным.
  4. Статор. Такая деталь может включать в себя не один магнит, а, к примеру, две пары полюсов. Вместе с этим на месте статических магнитов здесь будут находиться катушки электромагнитов. Совершать работу такое устройство способно как от постоянного тока, так и от переменного.

Схема регулятора оборотов коллекторного двигателя

В виде регуляторов оборотов электродвигателей 220 В и 380 В применяются особые частотные преобразователи. Такие устройства относят к высокотехнологическим, они и помогают совершить кардинальное преобразование характеристики тока (форму сигнала, а также частоту). В их комплектации имеются мощные полупроводниковые транзисторы, а также широтно-импульсный модулятор. Весь процесс осуществления работы устройства происходит с помощью управления специальным блоком на микроконтроллере. Изменение скорости во вращении ротора двигателей происходит довольно медленно.

Именно по этой причине частотные преобразователи применяются в нагруженных устройствах. Чем медленнее будет происходить процесс разгона, тем меньшая нагрузка будет совершена на редуктор, а также конвейер. Во всех частотниках можно найти несколько степеней защиты: по нагрузке, току, напряжению и другим показателям.

Некоторые модели частотных преобразователей совершают питание от однофазового напряжения (оно будет доходить до 220 Вольт), создают из него трехфазовое. Это помогает совершить подключение асинхронного мотора в домашних условиях без применения особо сложных схем и конструкций. При этом потребитель сможет не потерять мощность во время работы с таким прибором.

https://youtube.com/watch?v=EYkb8_6F-Sw

Зачем используют такой прибор-регулятор

Если говорить про двигатели регуляторов, то обороты нужны:

  1. Для существенной экономии электроэнергии. Так, не любому механизму нужно много энергии для выполнения работы вращения мотора, в некоторых случаях можно уменьшить вращение на 20−30 процентов, что поможет значительно сократить расходы на электроэнергию сразу в несколько раз.
  2. Для защиты всех механизмов, а также электронных типов цепей. При помощи преобразовательной частоты можно осуществлять определённый контроль за общей температурой, давлением, а также другими показателями прибора. В случае когда двигатель работает в виде определённого насоса, то в ёмкости, в которую совершается накачка воздуха либо жидкости, стоит вводить определённый датчик давления. Во время достижения максимальной отметки мотор попросту автоматически закончит свою работу.
  3. Для процесса плавного запуска. Нет особой необходимости применять дополнительные электронные виды оборудования — все можно осуществить при помощи изменения в настройках частотного преобразователя.
  4. Для снижения уровня расходов на обслуживание устройств. С помощью таких регуляторов оборотов в двигателях 220 В можно значительно уменьшить возможность выхода из строя приборов, а также отдельных типов механизмов.

Схемы, по которым происходит создание частотных преобразователей в электродвигателе, широко используются в большинстве бытовых устройств. Такую систему можно найти в источниках беспроводного питания, сварочных аппаратах, зарядках телефона, блоках питания персонального компьютера и ноутбука, стабилизаторах напряжения, блоках розжига ламп для подсветки современных мониторов, а также ЖК-телевизоров.

Выбираем устройство

Для того чтобы подобрать эффективный регулятор необходимо учитывать характеристики прибора, особенности назначения.

Для коллекторных электродвигателей распространены векторные контроллеры, но скалярные являются надёжнее. Важным критерием выбора является мощность. Она должна соответствовать допустимой на используемом агрегате

А лучше превышать для безопасной работы системы. Напряжение должно быть в допустимых широких диапазонах. Основное предназначение регулятора преобразовывать частоту, поэтому данный аспект необходимо выбрать соответственно техническим требованиям

Ещё необходимо обратить внимание на срок службы, размеры, количество входов

Поделитесь в социальных сетях:FacebookX
Напишите комментарий