Принцип работы солнечной батареи: как устроена и работает солнечная панель

Как выполнятся монтаж

Выбирают место, где будут фиксироваться панели. Оценивают факторы:

  • тень: следует найти наиболее ярко освещаемый на протяжении всего дня участок;
  • ориентация по сторонам света: если объект расположен на севере, модуль располагают лицевой панелью к югу и, наоборот;
  • угол наклона: он должен соответствовать широте, в которой находится объект (в зависимости от положения относительно экватора осуществляется коррекция 12°).

Монтаж солнечных панелей

Крепить панели можно на крыше дома или при помощи специальных ферм. В первом случае достаточно зафиксировать профили. К ним уже крепят модули при помощи болтового соединения. Когда же солнечные батареи монтируются на специальных конструкциях (фермах), этапы работ будут отличаться:

  1. Выполняется сборка профилей, уголков.
  2. Подготавливают болты нужного размера, инструмент.
  3. Фиксируют панели так, чтобы не было люфта между ними и опорной конструкцией.

Подключение электроники предполагает необходимость присоединения батареи посредством проводов. Соединяют контроллер, инвертор согласно схеме. На последнем этапе вся конструкция подключается к потребителю (обслуживаемому объекту).

Как используется солнечная энергия

Существует два основных способа преобразования солнечной энергии. После выполнения определенных действий она превращается в тепло и электричество. Именно первый вариант стал использоваться в первую очередь, при котором тепловая энергия солнца собиралась с помощью специальных коллекторов (рис. 1). Собранное тепло передается теплоносителю и далее осуществляется его практическое применение. Подобные системы используются для дома при устройстве отопления и подачи горячей воды. Во втором случае солнечная энергия напрямую превращается в электрическую. Данный процесс осуществляется с использованием физических свойств фотоэлектрических элементов. Эти качества похожи на природный фотосинтез, в результате которого солнечные лучи превращаются в другие виды материи. Действие солнечной батареи и производство электроэнергии происходит по аналогичной схеме в дневное и ночное время.

В данном случае все зависит от материала, используемого в солнечных панелях. В большинстве устройств применяется кремний, соединенный с медью, кадмием, индием. Полученные таким образом полупроводники, под влиянием света начинают вырабатывать электрический ток. Наиболее высокий КПД у фотоэлектрических панелей из монокристаллического кремния. Другие виды элементов – поликристаллические и аморфные, считаются менее эффективными, обладают более низким КПД и стоят значительно дешевле.

Определенное количество фотоэлементов объединяются вместе, и становятся общими работающими солнечными батареями. Кроме того, гелиосистема включает в себя инвертор для преобразования напряжения, контроллер для управления зарядкой-разрядкой, а также один или несколько аккумуляторов.

Как рассчитать необходимую мощность солнечных батарей

При выборе гелиопанелей мощность выступает одним из основных параметров данного оборудования, сказывающемся на его стоимости. Подобрать для домашнего использования по данному критерию модуль (соответственно прочие комплектующие) можно несколькими способами:

  • определив суточное (почасовое) электропотребление всех имеющихся дома потребителей электроэнергии;
  • по величине потребляемой электроэнергии (определяется по электросчетчику).

Чтобы определить суточное потребление электроэнергии домашними электроприборами, необходимо составить их перечень с указанием потребляемой мощности. После следует записать часы (период) и время работы каждого устройства в течение дня.

Умножением времени использования прибора на его мощность удастся рассчитать электропотребление в сутки. Суточное потребление электроэнергии получится сложением потребления всех единиц электрооборудования.

Солнечные панели за световой день по производительности должны покрывать рассчитанную суточную величину электропотребления. Желательно создать запас по мощности примерно 20 %.

Для проведения расчетов удобно все данные занести в таблицу. Её пример:

Пример таблицы для расчета электропотребления

Следует учитывать наличие пиковых часов энергопотребления, чтобы оптимизировать скачки нагрузки путем отключения ненужных во время пика электроприборов. Их поможет выявить записанное потребление по приборам.

По показателям счетчика требуемая мощность панелей рассчитывается упрощенным способом (например, потребление 210 кВт за 30 дней) в следующей последовательности:

  • 210 кВт/30 дней = 7 кВт – средний дневной расход, а 7000 Вт/24 часов = 292 Вт (округленно) – это среднечасовое потребление;
  • затем величину среднего потребления за день (7 кВт) необходимо разделить на усредненную продолжительность светового дня по региону (определяется широтой местности) – это даст требуемую производительность электростанции в час.

Изложенные выше способы позволяют получить усредненные данные. Более точную информацию даст учет в расчетах среднего числа солнечных дней в каждом месяце, средней продолжительности светового дня по месяцам года, потерь в цепи.

Дом с потребителями электроэнергии

Рассчитав величину электропотребления жилья удобным способом, можно приобрести готовые солнечные электростанции заводского производства либо самостоятельно собрать схему. В последнем случае понадобится правильно подобрать по мощности, рабочему напряжению и способу функционирования аккумулятор, инвертор, контроллер. Цены на устройства варьируются в широком диапазоне. Они зависят от эксплуатационных характеристик и вида оборудования, производителя. Поэтому в вопросе выбора большая роль принадлежит личным финансовым возможностям.

В нижеследующем видеоролике на примере с расчетами показан выбор солнечных панелей и других устройств, необходимых для создания домашней электростанции:

Из чего сделаны

Чтобы изучить устройство солнечной батареи, нужно разобраться в основных разновидностях, так как технология производства имеет существенные различия в зависимости от используемого сырья:

  1. Батареи CdTe. Теллурид кадмия применяется при изготовлении пленочных модулей. Слоя в несколько сотен микрометров хватает для того, чтобы получить КПД порядка 11% или немного выше. Это откровенно низкий показатель, зато в пересчета на 1 Ватт мощности себестоимость электроэнергии получается как минимум на 30% дешевле, чем у традиционных вариантов из кремния. При том, что данная разновидность намного тоньше и легче.
  2. Тип CIGS. Аббревиатура обозначает, что в состав входят медь, индий, галлий и селен. Получается полупроводник, который также наносится небольшим слоем, но в отличие от первого варианта тут эффективность на порядок выше и составляет 15%.
  3. Типы GaAs и InP отличает возможность нанесения тонкого слоя в 5-6 мкм, при этом КПД будет составлять около 20%. Это новое слово в технологиях добычи электроэнергии из солнечного света. Благодаря высоким рабочим температурам батареи могут сильно нагреваться без потери эксплуатационных характеристики. Но из-за того, что при производстве используются редкоземельные материалы, себестоимость этого типа высока.
  4. Батареи с квантовыми точками (QDSC). В них в качестве поглощающего материала для преобразования солнечной энергии используются квантовые точки вместо традиционных объемных материалов. За счет особенностей настройки запрещенных зон можно делать многопереходные модули, поглощающие солнечную энергию более эффективно.
  5. Аморфный кремний наносится методом испарения и имеет неоднородную структуру. Он не отличается высокими показателями КПД, но однородная поверхность очень хорошо поглощает даже рассеянный свет.
  6. Поликристаллические варианты изготавливаются путем плавления кремния и его охлаждения при определенных условиях, чтобы получить однонаправленные кристаллы. Одно из самых распространенных решений благодаря дешевизне производства и неплохим показателям КПД.
  7. Монокристаллические элементы состоят из цельных кристаллов, разрезанных на тонкие пластинки и легированных фосфором. Самое долговечное решение, у которого низкие показатели деградации и срок службы, составляющий как минимум 30 лет, но чаще всего больше на 10-15 лет.


Батареи из теллурида кадмия – одни из самых выгодных по себестоимости киловатта электроэнергии.

Кстати! Эффективность того или иного варианта зависит от технологии производства, поэтому ее нужно уточнять.

Правила установки

Максимальная мощность панели достигается в положении, при котором солнечные лучи падают перпендикулярно. Это необходимо учитывать при установке

Важно также учесть, в какое время суток минимальная облачность. Если угол наклона крыши и ее положение не соответствуют требованиям, то оно исправляется регулировкой основания. Между батареей и крышей должен быть воздушный зазор 15–20 сантиметров

Это необходимо для протекания дождя и предохранения от перегрева

Между батареей и крышей должен быть воздушный зазор 15–20 сантиметров. Это необходимо для протекания дождя и предохранения от перегрева.

Фотоэлементы плохо работают в тени, поэтому следует избегать располагать их в тени от зданий и деревьев.

Электростанции из солнечных фотоэлементов – это перспективный экологически чистый источник энергии. Их широкое применение позволит решить проблемы с нехваткой энергии, загрязнением окружающей среды и парниковым эффектом.

Предыдущая Альтернативные источникиКак правильно осуществить установку солнечных батарей

Спасибо, помогло!Не помогло

Схема и принцип работы домашней электростанции

Имея только солнечную батарею, не получится использовать производимую ей электроэнергию для питания электрических приборов. Чтобы создать домашнюю электростанцию по стандартной схеме (с напряжением на выходе 220 В), кроме гелиопанели понадобится приобрести (или самостоятельно собрать) еще ряд устройств:

  • аккумуляторную батарею (АКБ);
  • контроллер;
  • инвертор.

Устройства должны соответствовать по своим рабочим характеристикам друг другу. Все подсоединения на участке цепи с постоянным током должны выполняться строго с соблюдением указанной полярности.

Работает схема так:

  1. Вырабатываемое фотоэлементами солнечной панели напряжение подается на соответствующие клеммы контроллера. Прибор распределяет электроэнергию между потребителями и аккумулятором. Он контролирует величину заряда АКБ, защищая ее (от перезарядки или полной разрядки) и панель (от обратных токов).
  2. Так как гелиопанель вырабатывает постоянный ток, то после контроллера (или аккумулятора) питание поступает на инвертор. Данный прибор предназначен для преобразования постоянного напряжения (величиной 12, 24 или 48 В) в переменное (220 В частотой 50 Гц).
  3. После инвертора уже осуществляется подключение домашнего электрооборудования.

Аккумуляторы выполняют свою стандартную функцию – являются накопителями энергии. Заряжаются они в светлое время суток, а разрядка происходит ночью.

Для повышения уровня надежности электроснабжения устанавливают две аккумуляторные батареи: основную и резервную. Избыточная электроэнергия будет сохраняться в «резерве». Соединяют аккумуляторы последовательно или параллельно в зависимости от вольтажа АКБ и необходимой величины напряжения на их общем выходе. Пример представлен на иллюстрации:

Чтобы сэкономить, можно обойтись без контроллера или аккумулятора либо без обоих устройств. В первом случае понадобится постоянно следить за уровнем заряда АКБ и отключать их в ручном режиме. Если этого не делать, то аккумуляторы быстрее выйдут из строя, не будут оптимальным образом функционировать панели. При отсутствии аккумуляторной батареи электростанция будет функционировать только при достаточном уровне освещенности. Такой вариант подходит только для совместной работы с системой централизованного электроснабжения.

Бывают случаи, когда используются для освещения лампочки на 12 В постоянного напряжения. Тогда инвертор не нужен.

Для защиты участков цепей переменного и постоянного тока используют предохранители с соответствующим номиналом по силе тока. Гелиопанели от перегрева и перегрузок по напряжению спасают с помощью диодов. Их число рассчитывается по количеству фотоэлементов в схеме.

Чтобы повысить эффективность работы гелиопанелей, их можно оснастить поворотными механизмами. Последние разворачивают панели максимальной площадью к Солнцу, используя специальные датчики слежения за светилом.

Виды солнечных панелей

Кроме мощности и других рабочих параметров, солнечные панели различаются по материалам, используемым в их конструкции.

Монокристаллический кремний

В наиболее качественных панелях применяется монокристаллический кремний. Данные элементы изготавливаются в форме квадрата с закругленными углами. Такая конфигурация обусловлена технологией изготовления, когда выращенные кристаллы изначально принимают цилиндрическую форму. Далее края цилиндров обрезаются и основание принимает нужную конфигурацию, из чего потом делаются заготовки.

Готовые ячейки устанавливаются на подложку и накрываются стеклом или ламинированным покрытием. Полученные таким способом батареи имеют максимально возможный КПД, отличаются высоким качеством и надежностью в работе.

Поликристаллический кремний

Технология изготовления почти такая же за исключением формы кристалла, который в конце изготовления принимает не круглую, а квадратную форму. В его структуру входят мелкие кристаллы в большом количестве, поэтому конечный продукт и получается в квадратной конфигурации.

Сырьем служат отходы, полученные при изготовлении фотоэлементов и микросхем. В результате, готовые приборы обладают более низким КПД, однако конкретные параметры зависят от производителя, и нередко совпадают с монокристаллическими изделиями.

Аморфный кремний

Используется в производстве гибких солнечных панелей. Вместо кристаллов здесь выполняется напыление тонкого слоя кремния со всеми добавками, после чего образуется покрытие нужной толщины. После разрезания листов и приклеивания на них токопроводящих полосок, конструкция покрывается ламинатом.

Такие батареи обладают самым низким КПД, однако они могут сгибаться во всех направлениях, а скатанные в рулон – транспортируются на любые расстояния. Данные изделия незаменимы в полевых условиях, в походах и путешествиях при отсутствии возможности нормальной зарядки.

Обеспечение электричеством дачного участка

Теперь можно рассмотреть экономическую выгоду от подключения солнечной установки на дачном доме. Здесь стоит учитывать, насколько стабильно поселок получает электричество, какой уровень инсоляции (сколько времени станция находится под солнцем), какая потребуется мощность, а также какой риск воровства, если владелец участка отсутствует. Наиболее подходящее решение — выбрать стационарную ФСЭ первой группы.

Поскольку для дачи требуется невысокая потребляемая мощность, вполне реально на 100 % отказаться от центральной подстанции и перейти на самообеспечение, которое еще и дешевле

Однако, если монтаж стационарного комплекта из-за некоторых причин оказывается невыгодным, можно обратить внимание на мобильную сборку

Виды солнечных батарей

Кроме размера и мощности, панели отличаются способом, которым изготавливаются из кремния отдельные элементы.

Элементы из монокристаллического кремния

Элементы солнечных батарей, изготовленные из монокристаллического кремния, имеют форму квадрата с закругленными углами. Это связано с технологией изготовления:

  • из расплавленного кремния высокой степени очистки выращивается кристалл цилиндрической формы;
  • после остывания у цилиндра обрезаются края, и основание из круга принимает форму квадрата с закругленными углами;
  • получившийся брусок разрезается на пластины толщиной 0,3 мм;
  • в пластины добавляются бор и фосфор и на них наклеиваются контактные полоски;
  • из готовых элементов собирается ячейка батареи.

Готовая ячейка закрепляется на основании и закрывается стеклом, пропускающим ультрафиолетовые лучи или ламинируется.

Такие устройства отличаются самым высоким КПД и надежностью, поэтому устанавливаются в важных местах, например, в космических аппаратах.

Фотоэлементы из мульти-поликристаллического кремния

Кроме элементов из цельного кристалла, есть устройства, в которых фотоэлементы изготавливаются из поликристаллического кремния. Технология производства похожа. Основное отличие в том, что вместо кристалла круглой формы используется прямоугольный брусок, состоящий из большого количества мелких кристаллов различных форм и размеров. Поэтому элементы получаются прямоугольной или квадратной формы.

В качестве сырья берутся отходы производства микросхем и фотоэлементов. Это удешевляет готовое изделие, но ухудшает его качество. Такие устройства имеют меньший КПД – в среднем 18% против 20–22% у монокристаллических батарей. Однако вопрос выбора достаточно сложный. У разных производителей цена одного киловатт мощности монокристаллических и поликристаллических панелей может быть одинаковой или в пользу любого вида устройств.

Фотоэлементы из аморфного кремния

В последние годы распространение получили гибкие батареи, которые легче жестких. Технология их изготовления отличается от технологии изготовления моно- и поликристаллических панелей – на гибкую основу, обычно стальной лист, напыляются тонкие слои кремния с добавками до достижения необходимой толщины. После этого листы разрезаются, к ним приклеиваются токопроводящие полоски и вся конструкция ламинируется.

КПД таких батарей примерно в 2 раза меньше, чем у жестких конструкций, однако, они легче и более прочные за счет того, что их можно сгибать.

Такие приборы дороже обычных, но им нет альтернативы в походных условиях, когда основное значение имеет легкость и надежность. Панели можно нашить на палатку или рюкзак, и заряжать аккумуляторы во время движения. В сложенном виде такие устройства похожи на книгу или свернутый в рулон чертеж, который можно поместить в футляр, напоминающий тубус.

Кроме зарядки мобильных устройств в походе, гибкие панели устанавливаются в электромобилях и электросамолетах. На крыше такие приборы повторяют изгибы черепицы, а если в качестве основы использовать стекло, то оно приобретает вид тонированного и его можно вставить в окно дома или теплицу.

Виды солнечных панелей

Солнечные батареи функционируют долго, могут вырабатывать постоянный ток, даже если погода пасмурная. Вместе с тем появляется возможность предупредить возникновение скачков напряжения. Как результат, техника на объекте, подключенная к такому источнику электроэнергии, служит дольше, т. к. созданы более щадящие условия эксплуатации (исключается риск повышения, падения напряжения, отключение питания).

Модуль представляет собой панель, состоящую из нескольких преобразователей, объединенных между собой. Чтобы изменить характеристики солнечной батареи, добавляют такие конструкции. Но эффективность работы подобных устройств зависит не только от количества модулей, а еще и от того, насколько правильно была выполнена установка (учитывают углы наклона панелей, интенсивность солнечного освещения на участке). Модули представлены видами:

Монокристаллические. Производятся из чистого материала – монокристаллического кремния. Его отличает высокие показатели эффективности. Причем КПД солнечных элементов – около 22%, а панелей на их основе – не более 18%. Такие модули рекомендуется применять в местности, где уровень освещенности часто низкий.


Монокристаллическая солнечная панель

Поликристаллические. По стоимости они предпочтительнее, т. к. производятся из мультикристаллических пластин. Еще одна причина низкой цены – недостаточно высокая производительность. Рекомендуется применять такие модули, если в местности сравнительно одинаковый уровень освещенности в разное время, отсутствуют резкие перепады.


Поликристаллические солнечные панели

Аморфные. Другое название – тонкопленочные солнечные батареи. Они отличаются универсальным действием (применяются на разных объектах, в различных целях). Могут устанавливаться там, где жаркое солнце внезапно сменяется облачной погодой. Теоретически аморфные панели в будущем будут использоваться не только на крышах, но и на сумках, других бытовых изделиях. Минусом таких панелей является более низкая производительность, если сравнивать с поли-, монокристаллическими.


Тонкопленочные (аморфные) солнечные панели

Гетероструктурные. Считаются наиболее эффективными, их КПД достигает 25%. Панели вырабатывают электроэнергию при солнечной и пасмурной погоде. В России такую продукцию представляет марка «Хевел». Компания-производитель разрабатывает и внедряет собственную технологию производства гетероструктурных панелей.


Гетероструктурные солнечные панели Основные элементы конструкции:

  • аккумулятор, позволяющая устранить перепады напряжения, вызванные изменением освещенности панели, а еще одна накапливает энергию;
  • инвертор – преобразователь тока (из постоянного в переменный);
  • контроллер: обеспечивает стабильную работу модуля, т. к. контролирует все параметры (температуру, зарядное напряжение аккумулятора и др.).

В продаже встречаются готовые системы, а также отдельные элементы для сбора с учетом собственных потребностей.

Принцип работы солнечных батарей

Солнечные батареи считаются очень эффективным и экологически чистым источником электроэнергии. В последние десятилетия данная технология набирает популярность по всему миру, мотивируя многих людей переходить на дешевую возобновляемую энергию. Задача этого устройства заключается в преобразовании энергии световых лучей в электрический ток, который может использоваться для питания разнообразных бытовых и промышленных устройств.

Правительства многих стран выделяют колоссальные суммы бюджетных средств, спонсируя проекты, которые направлены на разработку солнечных электростанций. Некоторые города полностью используют электроэнергию, полученную от солнца. В России эти устройства часто используются для обеспечения электроэнергией загородных и частных домов в качестве отличной альтернативы услугам централизованного энергоснабжения. Стоит отметить, что принцип работы солнечных батарей для дома достаточно сложный. Далее рассмотрим подробнее, как работают солнечные батареи для дома подробно.

Как было сказано раньше, принцип работы заключается в эффекте полупроводников. Кремний является одним из самых эффективных полупроводников, из известных человечеству на данный момент.

При нагревании фотоэлемента (верхней кремниевой пластины блока преобразователя) электроны из атомов кремния высвобождаются, после чего их захватывают атомы нижней пластины. Согласно законам физики, электроны стремятся вернуться в свое первоначальное положение. Соответственно, с нижней пластины электроны двигаются по проводникам (соединительным проводам), отдавая свою энергию на зарядку аккумуляторов и возвращаясь в верхнюю пластину.

Технические характеристики

Устройство солнечной батареи довольно простое, и состоит из нескольких компонентов:

  • Непосредственно фотоэлементы / солнечная панель;
  • Инвертор, преобразовывающий постоянный ток в переменный;
  • Контроллер уровня заряда аккумулятора.

Аккумуляторы для солнечных батарей купить следует с учетом необходимых функций. Они накапливают и отдают электроэнергию. Запасание и расход происходит в течение всего дня, а ночью накопленный заряд только расходуется. Таким образом, происходит постоянное и непрерывное снабжение энергией.

Чрезмерная зарядка и разрядка батареи укорачивает ее эксплуатационный срок. Контроллер заряда солнечной батареи автоматически приостанавливают накопление энергии в аккумуляторе, когда он достиг максимальных параметров, и отключают нагрузку устройства при сильной разрядке.

(Tesla Powerwall – аккумулятор для солнечных панелей на 7 КВт – и домашняя зарядка для электромобилей)

Сетевой инвертор для солнечных батарей является самым важным элементом конструкции. Он преобразовывает полученную от солнечных лучей энергию в переменный ток различной мощности. Являясь синхронным преобразователем, он совмещает выходное напряжение электрического тока по частоте и фазе со стационарной сетью.

Фотоэлементы могут соединяться как последовательно, так и параллельно. Последний вариант увеличивает параметры мощности, напряжения и тока и позволяет устройству работать, даже если один элемент потеряет функциональность. Комбинированные модели изготовлены с использованием обеих схем. Эксплуатационный срок пластин около 25 лет.

Выводы

Еще два десятилетия назад диковинкой казались микрокалькуляторы с фотоэлементами, что позволяло не менять в них «батарейку-таблетку» годами. Сейчас же мобильные телефоны со встроенной в заднюю крышку солнечной панелью никого не удивляют. А ведь это мелочь в сравнении с автомобилями и самолетами (пусть и беспилотными), которые научились передвигаться при помощи одной лишь солнечной энергии.

Будущее солнечных батарей видится точно таким же светлым, как само солнце. Хочется верить, что именно солнечные батареи позволят наконец-то вылечить смартфоны и планшеты от «розеткозависимости».

Поделитесь в социальных сетях:FacebookX
Напишите комментарий