Как произвести расчет ветрогенератора: формулы + практический пример расчета

Как сделать правильный выбор?

Так на что же обратить внимание при выборе ВЭУ? Не стоит считать, что самый дорогой и импортный ветрогенератор будет самым лучшим. Исходить, в первую очередь, нужно не из цены, а из ваших потребностей

Перед тем, как сделать покупку, посчитайте, сколько электроэнергии вы планируете расходовать

Перед тем, как сделать покупку, посчитайте, сколько электроэнергии вы планируете расходовать.

Понятно, что выбирать нужно ту модель, которая способна вырабатывать нужное вам количество энергии. Однако будьте внимательны. Каждый ветрогенератор рассчитан на определенную скорость ветра. Это означает, что заявленную производителем мощность он способен выдавать именной при той скорости, которая указана в инструкции к нему.

Если максимальную мощность ВЭУ развивает при скорости ветра 10 -12 м/с, а в вашей местности средний показатель не превышает 4−5 м/с, то не стоит ожидать, что устройство будет вырабатывать заявленное количество электроэнергии. В итоге вы заплатите лишние деньги за то, чего не получите.

Мощность ветрогенератора находится в прямой зависимости от диаметра колеса, образованного лопастями. С погрешностью 20% ее можно рассчитать по формуле: квадрат диаметра помножить на куб средней скорости ветра и разделить полученное значение на 7000. То есть при диаметре колеса, равном двум метрам и средней скорости ветра в вашей местности 3 м/с вы получите около 0,015 кВт электроэнергии. Если же диаметр увеличить в два раза, то ветрогенератор при той же скорости ветра будет выдавать в 4 раза больше электроэнергии — 0,6 кВт. Таким образом, при прочих одинаковых характеристиках, более производителен ветряк с большим размером лопастей.

Не менее важно при выборе ветрогенератора обращать внимание на ёмкость аккумулятора. Если вы живете не в прибрежной зоне, то штиль в вашей местности — явление нередкое. В этом случае система будет работать именно от аккумулятора

В этом случае система будет работать именно от аккумулятора

В этом случае система будет работать именно от аккумулятора

А он имеет свойство разряжаться. Поэтому желательно, чтобы помимо него имелся резервный источник энергии

В этом случае система будет работать именно от аккумулятора. А он имеет свойство разряжаться. Поэтому желательно, чтобы помимо него имелся резервный источник энергии.

С этой целью можно приобрести установку сразу с солнечными батареями, или же подключить ветряк к сети. В этом случае он будет лишь компенсировать недостаток электроэнергии в случае необходимости.

Сколько же энергии нужно среднестатистической семье?

  1. В городской квартире будет достаточно 0,5 кВт. Чтобы было понятнее, счетчик в этом случае будет показывать 360 кВт•ч.
  2. Ветряк мощностью 5 кВт может обеспечить такое количество энергии даже в том случае, если скорость ветра невелика.
  3. Если же в квартире постоянно работает какой-либо отопительный прибор, то тот же ветрогенератор сможет обеспечить его работу только при такой скорости ветра, которая возможна лишь у береговой линии.

Практические расчеты

Можно для понимания процессов округлить начальные величины, применив трехлопастной винт. Допустим V=10 м/с, площадь S=10м² (радиус винта 1,78 м), а плотность ρ принять 1,3кг/м3. Таким образом, N=1,3*10*1000/2=6500 (Вт). Умножаем на 30% (КИЭВ): 6500*30/100=1950 (Вт). При таком раскладе генерацию почти двух киловатт электроэнергии (без учета КПД электрогенератора) можно считать весьма обнадеживающей.

С учетом потерь на электрогенераторе, кабеле, заряде аккумулятора и инвертора можно стабильно рассчитывать на приблизительно 1 кВт электроэнергии на выходе домашней ветряной электростанции, если ветроэнергетическая установка имеет приведенные выше параметры.

Устройство ветрогенератора с трехлопастным винтом

Но, если взять скорость ветра преобладающую в большинстве регионов (4м/с) то полученный результат, с учетом КИЭВ будет: (1,3*10*4*4*4/2)*30/100=124,8 (Вт), и это без учета потерь на остальных компонентах домашней ветровой электростанции.

Такой мощности хватит лишь на стабильную беспрерывную  работу ноутбука и зарядку мобильных телефонов. При снижении скорости ветра до 3м/с результат на выходе и вовсе будет мизерным: (1,3*10*3*3*3/2)*30/100=52,65 (Вт).

Если еще снизить скорость ветрового потока до двух метров в секунду, то выход мощности будет: (1,3*10*2*2*2/2)*30/100=15,6 (Вт). Но, практика показывает, что при скорости ветра 2м/с и ниже,  трехлопастной винт даже не раскрутится. Поэтому при низких скоростях ветра используют тихоходные винты, увеличивая количество лопастей, или применяя роторы других конструкций (Дарье, Ленца, Савониуса), у которых меньше КИЭВ, но они более «восприимчивы» к слабым дуновениям воздуха.

Ветроэнергетические роторные установки различных конструкций

Конструкции ветрогенераторов

Существует ошибочное мнение, что с увеличением у винта количества лопастей растет мощность ветрогенератора, но это в корне не так – ведь вращающиеся лопасти создают вихрь, и чем больше их в ветряке, тем большее количество энергии ветра будет расходоваться на закручивание воздуха вокруг оси винта.

В идеале самым эффективным является однолопастной винт, создающий меньше всего завихрений, при этом обладающий большой быстроходностью и требующий значительных скоростей ветра.

Однолопастной винт ветрогенератора, создающий минимальные завихрения

Поэтому типичный ветряной генератор имеет три лопасти, как наилучший компромисс между тихоходностью и потерей энергии на завихрения.В приведенных выше расчетах использовался гипотетический лопастной винт с размахом (диаметром) 1,78*2=3,56 м.

Это довольно громоздкая конструкция, очень сложная для самостоятельного изготовления и установки. Народные умельцы делают лопастные винты меньшего диаметра из подручных материалов, изготавливая лопасти для ветрогенератора своими руками, например из канализационной ПХВ трубы.

Геометрия лопасти имеет сходство с крылом самолета, но у ветряка угол атаки для максимальной эффективности ветрогенератора должен изменяться по мерее отдаления от оси вращения. Следует детально изучить специальную литературу, а также посоветоваться с умельцами на различных форумах, прежде чем пытаться проектировать и изготовлять лопастные винты.

Поперечные разрезы лопасти винта ветрогенератора

Поэтому многие умельцы обращают внимание на другие конструкции, например, турбины с вертикальной осью, которые более тихоходные с меньшими требованиями к точности расчетов и требований безопасности. Изготовить такой роторный ветрогенератор своими руками можно в домашнем гараже из подручных материалов и большой бочки, как показано в видеоролике ниже:

Эксперименты показывают, что данный самодельный и несовершенный ротор Онипко имеет даже лучшие характеристики, чем заводской трехлопастной винт вентилятора такого же диаметра.

https://youtube.com/watch?v=F8X2p6NjKfk

https://youtube.com/watch?v=6eoCOh0E6Qc

Виды ветрогенераторов

Принцип работы ветрогенераторов в большинстве случаев аналогичен. Но существует ряд разновидностей. Часто их различают по виду материалов, которые используются для изготовления роторных лопастей, их число, положение оси вращения, шаговый признак винта. Чтобы иметь понимание о работе, ветрогенератора, нужно вкратце рассмотреть эти виды.

Двухлопастной ветрогенератор

Трёхлопастной ветрогенератор

Многолопастной ветрогенератор

Помимо числа лопастей, ветрогенераторы отличаются материалами, их которых их делают. Лопасти могут быть жёсткими (металл или стеклопластик) или парусными. Последние менее практичны, но зато дёшево стоят. По шаговому признаку винта различают устройства с фиксированным и изменяемым шагом. Ветрогенераторы с фиксированным шагом являются более надёжными. Установки с изменяемым шагом вращения позволяют менять скорость, но их конструкция имеет большие габариты и требует дополнительных расходов монтаж и обслуживание.

Ветрогенератор с вертикальной осью вращения

  • Ветрогенератор Савониуса. Это несколько полуцилиндров полых внутри, которые закреплены на вертикальной оси. Здесь плюс заключается в том, что они могут вращаться вне зависимости от силы и направления ветра. Основной минус в том, что энергию ветра используется только на 1/3;
  • Геликоидный ротор. Этот вариант имеет закрученные лопасти, благодаря чему обеспечивается равномерное вращение. Это долговечный ветрогенератор, но сложный и дорогой;
  • Ротор Дарье. Система представляет собой конструкцию с двумя или более лопастями в форме плоских пластин. Ротор прост в изготовлении, но вырабатывает немного энергии. Для его запуска потребуется дополнительный механизм;
  • Многолопастные системы с вертикальной осью. Являются наиболее эффективными в плане выработки электроэнергии.

Можно подразделить ветрогенераторы на импортные и отечественные. Среди зарубежных достаточно много китайских производителей. Присутствует также продукция из США и ЕС. Без проблем можно найти и продукцию российских предприятий. Стоимость ветрогенераторов зависит от мощности, наличия дополнительных функциональных возможностей (например, солнечных модулей). Цены могут меняться от десятков до сотен тыс. р.  

Как работает простой ветрогенератор?

Существует два типа ветрогенераторов:

  • горизонтальные
  • вертикальные

Разница состоит в расположении оси вращения. Наиболее производительными считаются горизонтальные конструкции, напоминающие своими формами самолет с пропеллером. Винт — это крыльчатка ветряка, хвост — устройство наведения на поток ветра, автоматически разворачивающее ось по направлению движения воздуха.

При воздействии ветра на крыльчатку возникает вращающий момент, передающийся на ось генератора. В его обмотках возбуждается электроток, который заряжает аккумуляторные батареи. Они, в свою очередь, отдают заряд на инвертор, изменяющий параметры тока и выдающий на потребляющие приборы стандартное напряжение 220 В 50 Гц.

Выбор материала

Для изготовления лопастей используются различные материалы, главными требованиями, предъявляемые к ним, являются следующие:

  • Прочность – способность выдерживать постоянные нагрузки, обусловленные воздействием ветровых потоков;
  • Малый вес – увеличивает срок службы узлов и механизмов аппарата (подшипники, растяжки и т.д.);
  • Стойкость по отношению к атмосферным явлениям (осадки, солнечный свет, температура окружающего воздуха).

Всем, выше перечисленными требованиям, соответствуют: стекловолокно, композитные материалы, пластик и легкие металлы (алюминий, титан и прочие).

Выбор материала осуществляет производитель, в соответствии с экономической целесообразностью, наличием материала на соответствующем рынке, а также трудоемкости его обработки в процессе выполнения работ.

Окупаемость ветрогенератора

Использование ветряка начинается с определенных финансовых вложений

Неважно, приобретался он в готовом виде, или изготавливался из подручных материалов своими руками, расходы присутствуют всегда. Любые затраты вызывают вполне естественное желание знать, что именно приобретается за эти деньги и какой экономический эффект такая покупка создаст. Установка по производству электроэнергии — специфическое устройство, в корне отличающееся от других источников

Установка по производству электроэнергии — специфическое устройство, в корне отличающееся от других источников

Прежде чем начинать подсчет барышей, надо разобраться, где их искать

Установка по производству электроэнергии — специфическое устройство, в корне отличающееся от других источников. Прежде чем начинать подсчет барышей, надо разобраться, где их искать.

О чем идет речь?

Говоря об окупаемости, следует правильно понимать, о чем идет речь. В обычном понимании, окупаемость — это возможность возместить затраты. Срок окупаемости — это время, которое необходимо для возмещения расходов. Это базовые понятия, но окупаемость — это просто явление, некий процесс.

Срок окупаемости — это величина, которую можно учесть в каких-либо расчетах, изменить в ту или иную сторону. При этом, если есть окупаемость, значит присутствует либо торговля, либо альтернатива. То есть, купленный ветряк производит энергию, которая продается другим потребителям. Через какое-то время доход перекроет расход, что будет означать окончание срока окупаемости.

Другой вариант — присутствие альтернативного источника энергии, расходы на который за определенный период времени сопоставляются с расходами на ветряк.

Если использование ветряка является единственным способом получения энергии, без продажи другим пользователям, то ни о какой окупаемости речи быть не может. В такой ситуации некорректно даже использование этого термина.

Специфика эксплуатации ветряка

Ветрогенератор — это установка, производящая электрический ток. Он работает на совершенно бесплатном сырье, т.е. ветер достается даром, не требует расходов на изготовление, добычу и т.п. Такие условия существенно отличают ветряки от других электростанций, использующих углеводородное топливо. При этом, ветер — неустойчивый и нестабильный источник.

Для России он является малоперспективным, так как на территории страны преобладают слабые ветра. Ветрогенератор с номинальной мощностью 1 кВт на практике развивает 10 % мощности, т.е. около 100 Вт. В таких условиях приобретение дорогостоящего оборудования при имеющейся возможности подключения к дешевой сетевой энергии исключается.

Актуальным остается лишь вариант использования самодельного устройства, либо приобретение установки при полном отсутствии сетевого подключения.

Приведенные данные показывают, что отдельный ветрогенератор, даже при относительно большой мощности, не окупится никогда. Срок службы оборудования, заявленный производителями, составляет 20 лет. Учитывая сложные климатические условия России, морозные зимы, суточные перепады температур, можно предположить сокращение срока эксплуатации.

Какие ветрогенераторы самые эффективные

ГоризонтальныеВертикальные
Такой вид оборудования получил наибольшую популярность, в нем ось вращения турбины располагается параллельно земле. Подобные ветрогенераторы часто называют ветряными мельницами, в них обороты лопастей осуществляются против потока ветра. Конструкция оборудования включает в себя систему для автоматического прокручивания головной части. Она требуется для поиска ветрового потока. Также необходимо устройство для поворота лопастей, чтобы для выработки электроэнергии использовать даже небольшую силу.

Применение такого оборудования более целесообразно на промышленных предприятиях, чем в быту. На практике они чаще используются для создания систем ветроэлектростанций.

Устройства такого типа на практике менее эффективны. Вращение лопастей турбины осуществляется параллельно поверхности земли независимо от силы ветра и его вектора. Направление потока также не играют роли, при любом воздействии вращательные элементы прокручиваются против него. В результате этого ветровой генератор теряет часть мощности, что приводит к снижению энергоэффективности оборудования в целом. Но в плане установки и обслуживания агрегаты, в которых лопасти расположены вертикально, более подходят для домашнего использования.

Это связано с тем, что редукторный узел и генератор монтируются на земле. К минусам такого оборудования следует отнести дорогостоящую установку и серьезные эксплуатационные затраты. Для монтажа генератора потребуется достаточно места. Поэтому использование вертикальных устройств более целесообразно в небольших частных хозяйствах.

ДвухлопастныеТрехлопастныеМноголопастные
Данный тип агрегатов характеризуется наличием двух элементов вращения. Этот вариант практически неэффективен сегодня, но достаточно распространен за счет своей надежности.Этот вид оборудования является самым распространенным. Трехлопастные агрегаты используются не только в сельских хозяйствах и промышленности, но и в частных домовладениях. Этот тип оборудования получил распространение благодаря надежности и эффективности.Последние могут иметь от 50 и более элементов вращения. Чтобы обеспечить выработку нужного объема электроэнергии, надо не само прокручивание лопастей, а вывод на необходимое число оборотов. Наличие каждой дополнительного элемента вращения обеспечивает увеличение параметра общего сопротивления ветрового колеса. В результате этого выход оборудования на необходимое количество оборотов будет проблематичным.

Карусельные устройства, оборудованные множеством лопастей, начинают вращение при небольшой силе ветра. Но их применение более актуально, если играет роль непосредственно сам факт прокручивания, к примеру, когда требуется перекачка воды. Чтобы эффективно обеспечить выработку большого количества энергии, многолопастные агрегаты не используются. Для их функционирования требуется установка редукторного устройства. Это не только усложняет всю конструкцию оборудования в целом, но и делает ее менее надежной по сравнению с двух- и трехлопастными.

С жесткими лопастямиПарусные агрегаты
Стоимость таких агрегатов более высокая за счет дороговизны производства деталей вращения. Но по сравнению с парусным оборудованием, генераторы с жесткими лопастями более надежны и характеризуются высоким ресурсом эксплуатации. Поскольку в воздухе содержится пыль и песок, на элементы вращения воздействует высокая нагрузка. При работе оборудования в стабильных условиях, ему требуется ежегодная замена антикоррозийной пленки, которая наносится на концы лопастей. Без этого элемент вращения со временем начинает терять свои рабочие свойства.Такой тип лопастей более прост в плане производства и менее затратный, по сравнению с металлом либо стеклопластиком. Но экономия при изготовлении может привести к серьезным расходам в будущем. При диаметре ветрового колеса в три метра скорость движения конца лопасти может составить до 500 км/ч, когда обороты оборудования составляют около 600 в минуту. Это — серьезная нагрузка даже для жестких деталей. Практика показывает, что элементы вращения на парусном оборудовании приходится менять часто, особенно если сила ветра высокая.

В соответствии с разновидностью роторного механизма все агрегаты можно разделить на несколько видов:

  • ортогональные устройства Дарье;
  • агрегаты с роторным узлом Савониуса;
  • устройства с вертикально-осевой конструкцией агрегата;
  • оборудование с геликоидным типом роторного механизма.

Расчет параметров ветроколеса

Расчет ветроколеса имеет важное значение при создании ветрогенератора. Именно крыльчатка принимает на себя поток ветра, передает его энергию в виде вращательного движения на ротор генератора. Для расчета потребуется, прежде всего, знание параметров генератора — мощность, номинальная скорость вращения ротора и т.д

Для расчета потребуется, прежде всего, знание параметров генератора — мощность, номинальная скорость вращения ротора и т.д.

Следует учитывать, что увеличение количества лопастей снижает скорость вращения, но увеличивает мощность вращательного движения. Соответственно, малое число лопастей надо применять на быстроходных генераторах, а большое количество —торах, нуждающихся в большом усилии вращения.

Формула быстроходности ветроколеса выглядит следующим образом:

Z = L × W / 60 / V,

Где Z — искомая величина (быстроходность),

L — длина окружности, описываемой лопастями.

W — частота (скорость) вращения крыльчатки.

V — скорость ветра.

Специалисты рекомендуют для самостоятельного изготовления выбирать многолопастные образцы с количеством лопастей от 5 штук. Они не требовательны к балансировке, имеют более стабильную аэродинамику и более активно принимают на себя энергию воздушного потока.

Сколько экономии энергии дает ветряк?

Величина экономии, полученной от использования ветрогенератора, рассчитывается по собственным данным. Она складывается, с одной стороны из расходов на приобретение и сборку ветряка или его деталей, расходов на обслуживание комплекта. С другой стороны, учитывается стоимость сетевой электроэнергии в данном регионе, либо цена подключения и прочие расходы, связанные с этим.

Разница полученных величин и будет являться величиной экономии. Необходимо учесть также отсутствие возможности для подключения в некоторых районах, когда ветрогенератор становится единственным доступным вариантом. В таких случаях разговор об экономии становится неуместным.

Сколько электроэнергии вырабатывает?

Количество вырабатываемой энергии зависит от параметров крыльчатки и собственно генератора. Максимально возможным количеством следует считать номинальные данные генератора, уменьшенные на величину КИЭВ крыльчатки. На практике показатели намного ниже, так как в получении результата большое значение имеет скорость ветра, которую невозможно заранее предсказать.

Кроме того, имеются различные тонкие эффекты, в сумме оказывающие заметное влияние на конечную производительность ветряка. Принципиально важными значениями являются диаметр крыльчатки и скорость ветра, от них напрямую зависит количество полученной энергии.

Минимальная скорость ветра для ветряка

Минимальная скорость ветра — в данном случае это величина, при которой лопасти ветряка начинают вращаться. Это значение показывает степень чувствительности крыльчатки, но на конечный результат влияет слабо. Генератор имеет собственные потребности, для него само по себе вращение еще не решает все вопросы.

Требуется определенная скорость и стабильность движения, отсутствие резких рывков. Рассматривать минимальную скорость вращения следует только с позиций общей эффективности рабочего колеса, позволяющей оценивать его способность обеспечить выработку энергии на слабых потоках.

Рабочие характеристики ветряка

КПД не является единственным качественным показателем работоспособности ветрогенератора. Примечателен факт, что для конечного пользователя сам по себе КПД не представляет практического интереса, поскольку он является слишком обобщенным понятием. Для владельца устройства гораздо интереснее более конкретные и адресные параметры:

  • мощность
  • производительность
  • минимальная и максимальная скорость ветра
  • тип ротора
  • ремонтопригодность
  • высота мачты

На практике может возникнуть интерес и к другим характеристикам установки, в зависимости от степени их влияния на состояние и результаты работы устройства. Для промышленных образцов, изготовленных на заводе, ознакомление с подробными техническими характеристиками не составляет труда — они все указаны в паспорте устройства.

Другое дело, если ветряк создан самостоятельно. Тогда опираться даже на расчетные данные нет смысла, поскольку на практике они могут не подтверждаться и значительным образом отличаться от проектных. Поэтому необходимо всячески тестировать вновь созданный ветрогенератор, испытывая и снимая показания на разных скоростях ветра, режимах работы и прочих условиях функционирования.

Тепловая энергия земли

Тепло можно брать отовсюду – из грунта, воздуха, подземных источников и поверхностных вод. Для сбора низкотемпературного тепла, повышения его качеств и передачи потребителю применяются тепловые насосы. Использовать «тепло земли» можно для горячего водоснабжения, отопления и кондиционирования.

Известно несколько видов тепловых насосов:

  • Грунтовые – они собирают тепло при помощи закопанного ниже уровня промерзания земли горизонтального коллектора или проложенного в вертикальной скважине теплового зонда. Мощные и дорогие установки способны обеспечить потребителя теплом зимой, но использовать их лучше только в качестве аварийного варианта.
  • Водяные – по тому же принципу отбирают тепло у грунтовых вод или иных водоемов. Температура там обычно не опускается ниже 6°С. Водяные тепловые насосы сложны в монтаже, поскольку нужно бурить скважину и проводить регулярную очистку насоса.
  • Воздушные – обычно используются в теплых широтах, вбирая в себя тепло из окружающего воздуха.

Тепловой насос – довольно сложный прибор, который в условиях крайне низких температур практически не применим.

Расчет мощности ветрогенератора

Самостоятельное изготовление ветряка также нуждается в предварительном расчете. Никому не хочется потратить время и материалы на изготовление неведомо чего, хочется иметь представление о возможностях и предполагаемой мощности установки заранее. Практика показывает, что ожидания и реальность между собой соотносятся слабо, установки, созданные на основе приблизительных прикидок или предположений, не подкрепленных точным расчетами, выдают слабые результаты.

Поэтому обычно используются упрощенные способы расчетов, дающие достаточно близкие к истине результаты и не требующие использования большого количества данных.

Формулы для расчёта

Для расчета ветрогенератора надо произвести следующие действия:

  • определить потребность дома в электроэнергии. Для этого необходимо подсчитать суммарную мощность всех приборов, аппаратуры, освещения и прочих потребителей. Полученная сумма покажет величину энергии, необходимой для питания дома
  • полученное значение необходимо увеличить на 15-20 %, чтобы иметь некоторый запас мощности на всякий случай. В том, что этот запас нужен, сомневаться не следует. Наоборот, он может оказаться недостаточным, хотя, чаще всего, энергия будет использоваться не полностью
  • зная необходимую мощность, можно прикинуть, какой генератор может быть использован или изготовлен для решения поставленных задач.  От возможностей генератора зависит конечный результат использования ветряка, если они не удовлетворяют потребностям дома, то придется либо менять устройство, либо строить дополнительный комплект
  • расчет ветроколеса. Собственно, этот момент и является самым сложным и спорным во всей процедуре. Используются формулы определения мощности потока

Для примера рассмотрим расчет простого варианта. Формула выглядит следующим образом:

P=k·R·V³·S/2

Где P — мощность потока.

K — коэффициент использования энергии ветра (величина, по своей сути близкая к КПД) принимается в пределах 0,2-0,5.

R — плотность воздуха. Имеет разные значения, для простоты примем равную 1,2 кг/м3.

V — скорость ветра.

S — площадь покрытия ветроколеса (покрываемая вращающимися лопастями).

Считаем: при радиусе ветроколеса 1 м и скорости ветра 4 м/с

P = 0,3 × 1,2 × 64 × 1,57= 36,2 Вт

Результат показывает, что мощность потока равняется 36 Вт. Этого очень мало, но и метровая крыльчатка слишком мала. На практике используются ветроколеса с размахом лопастей от 3-4 метров, иначе производительность будет слишком низкой.

Что нужно учитывать

При расчете ветряка следует учитывать особенности конструкции ротора . Существуют крыльчатки с вертикальным и горизонтальным типом вращения, имеющие разную эффективность и производительность. Наиболее эффективными считаются горизонтальные конструкции, но они имеют потребности в высоких точках установки.

Не менее важным будет обеспечение достаточной мощности крыльчатки для вращения ротора генератора. Устройства с тугими роторами, позволяющие получать хороший выход энергии, требуют немалой мощности на валу, что может обеспечить только крыльчатка с большой площадью и диаметром лопастей.

Не менее важным моментом являются параметры источника вращения — ветра. Перед производством расчетов следует как можно подробнее узнать о силе и преобладающих направлениях ветра в данной местности. Учесть возможность ураганов или шквалистых порывов, узнать, с какой частотой они могут возникать. Неожиданное возрастание скорости потока опасно разрушением ветряка и выводом из строя преобразующей электроники.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий