Электрическая схема холодильника: устройство и принцип работы различных холодильников

Основные элементы холодильного шкафа

Конструкция холодильного шкафа представляет собой сочетание множества различных элементов. Так, его стенки состоят из двух частей, между которыми укладываются теплоизоляционные материалы. Энергопотребление холодильника зависит от качества теплоизоляции.

Для размещения продуктов используются полки. Могут быть стеклянные либо решетчатые.

Дверца холодильника также состоит из нескольких слоев. Предотвратить проникновение теплого воздуха через неплотности между дверью и корпусом холодильника помогает уплотнитель. В современных моделях он оборудован магнитной вставкой. На дверцах тоже располагаются полки для продуктов. Дверной проем в морозильных камерах иногда может быть оснащен электрическим нагревателем – это предохраняет ее от выпадения конденсата.

С целью освещения холодильной камеры используются осветительные приборы небольшой мощности, способные срабатывать при открывании дверцы. В некоторых моделях холодильников предусмотрено наличие сигнализации открытия двери. В соответствии с таймером, через определенный промежуток времени сигнализация срабатывает. Это необходимо для предотвращения таких случаев, когда холодильник забывают закрыть.

Как образуется холод

Принцип работы холодильника основан на том, что хладагент, попадая в испаритель, резко расширяется, переходя в газообразное состояние. Поэтому его температура падает, и он становится холоднее воздуха в камере. В результате температура в ней понижается, а фреон становится теплей.

В отличие от современных холодильников, у которых испаритель изготовлен в виде отдельно расположенных трубок из алюминия или пластин, в старых моделях для этой цели использованы стенки камеры.

Затем газообразный фреон, пройдя через фильтр-осушитель, сжимается компрессором и попадает в охладитель. Остывая, он становится жидким и через капиллярную трубку опять подаётся в испаритель. Повторение циклов происходит до достижения заданной температуры.

Особенности одно и двухкамерных холодильников

Несмотря на объединяющий их принцип работы — различия всё-таки есть. В большинстве однокамерных холодильников испаритель размещён в морозильном отсеке. В перегородке между ним и остальным объёмом камеры сделаны окна со шторками, которыми регулируется приток холодного воздуха. Надёжно, эффективно и проще некуда!

Двухкамерный холодильник, на котором есть только один компрессор, имеет по испарителю в каждой камере. Поначалу хладагент поступает в испаритель морозилки. После понижения в ней температуры фреон переходит в испаритель холодильной камеры. Когда температура в ней достигает заданного терморегулятором значения, отключается компрессор.

С недавних пор стали популярны модели с двумя компрессорами, каждый из которых предназначен для работы с одной камерой. Это позволяет устанавливать в каждой камере свою температуру. На первый взгляд кажется, что холодильный агрегат с одним компрессором экономичней. Однако это не совсем так, поскольку при необходимости у двухмоторных моделей возможно отключение одной камеры без ущерба для работы другой, что недопустимо у холодильников с одним компрессором.

Некоторые производители вместо второго компрессора применили клапана, управляемые электромагнитными катушками. Они устанавливаются на трубках, через которые фреон поступает в испарители. Это позволяет раздельно устанавливать температуру в камерах и отключать любую их них.

Электрическая схема холодильника Атлант 1709-02, 1700-02.

А1 – блок индикации В4-01-4,8 блок индикации М4-01-4,8, В1 – терморегулятор К-59 L2174, терморегулятор ТАМ 133-1М, EL –лампа освещения холодильной камеры, S1 – выключатель ВМ-4,8 , S2-выключатель, B2- терморегулятор К-56 L1954, терморегулятор Там145-2м-29-2,0-4,8-9-А, R1-нагреватель замораживания HX -01, RH1-тепловое реле компрессора, RA1-пусковое реле компрессора, CO1 – электродвигатель компрессора

История появления

Прототипы современных холодильников появились задолго до того, как появилось электричество. Доподлинно неизвестно кто заметил, что продукты в прохладе сохраняют свежесть дольше. Но это свойство холода люди использовали очень давно. Копались погреба, вырубались ледники. Эти нехитрые приёмы использовались многими цивилизациями на протяжении уже более 1000 лет.

В 1873 году появился первый компрессионный холодильник с использованием эфира в качестве охлаждающего агента. Позже его из-за высокой огнеопасности заменили на сжиженный воздух и диоксид серы. И только в 30-х годах 19 века появились первые хладагенты – хлорфторуглероды.

Это позволило промышленности начать массовый выпуск холодильников.

Холодильники с системой No Frost

В дословном переводе название системы означает: “без инея”. Это достигается с помощью встроенного вентилятора, который передаёт холод от единственного испарителя, размещённого в морозилке. Сначала холодный воздух распространяется внутри морозильной камеры, а затем через отверстия переходит в холодильный отсек.

За счёт циркуляции воздуха достигается равномерное распределение температуры в камерах. Для удаления наледи используется электронагреватель, находящийся под испарителем, который включается по сигналу таймера несколько раз в сутки. Образующаяся вода выводится наружу. В остальном устройство и принцип работы те же, что у обычных моделей.

Устройство компрессора холодильника

Фундаментальное физическое правило действует и в быту: тепло передается от тела с большей температурой к менее нагретому. Чтобы происходил обратный процесс, и в бытовом приборе создавался холод, нужно приложить внешнюю энергию в форме механической работы.

Именно по такой схеме действуют холодильные системы. Электричество приводит в действие специальное устройство, которое создает давление и сжимает газообразный хладагент, чтобы перевести его в жидкое состояние. Такой деталью является компрессор, который часто называют «сердцем холодильника». Ведь если он перестает нормально работать, процесс генерации холода невозможен. Помимо компрессионных, известны иные разновидности установок (абсорбционные, термоэлектрические), но в бытовых решениях для дома их не найти.

По конструкции компрессоры чаще всего представляют собой электродвигатель, приводящий в действие одноцилиндровый поршневой насос с клапанным механизмом. Реже встречаются установки линейного типа, где нет вращающихся деталей, а поршень насоса вибрирует от возвратно-поступательных движений сердечника электромагнитной катушки. Однако эти устройства не так распространены, их практически нет на старых моделях холодильников.

Инверторные компрессоры считаются наиболее передовым типом техники, имея ряд заметных преимуществ перед прежними моделями. Их выпускают сегодня ведущие компании отрасли:

Однако оборотной стороной оказывается их избыточная сложность, не позволяющая делать диагностику и ремонт системы в домашних условиях своими руками.

Когда сломался холодильник с инверторным компрессором, не стоит пытаться что-то делать с ним самостоятельно, обращайтесь к квалифицированным мастерам в сервис. Если же установка обычного типа с прямым питанием от 220В, есть шанс запустить заклинивший компрессор холодильника, не прибегая к посторонней помощи. Традиционно более пригодна к самодеятельному ремонту техника отечественных марок («Атлант», «Свияга»).

Где находится компрессор

Двигатель компрессора вместе с поршневым насосом, клапанным механизмом и ресиверами для фреона принято устанавливать на демпфирующих пружинах внутри герметично заваренного металлического кожуха. Эта деталь обычно красится в черный цвет для лучшей теплоотдачи и выглядит как округлый бак с выходящими из него трубками. Размещают его в задней стенке холодильника на металлической раме неподалеку от конденсатора (рассеивающего избыток тепла змеевика из трубок).

Давление внутри запаянного корпуса компрессора при нормальной работе – 10 атмосфер. Электропитание к мотору подается через контакты на наружной стенке бака.

Проверка компрессора на работоспособность

Результат штатной работы компрессора – создание необходимого давления хладагента в системе трубок. Для разных моделей этот показатель варьируется, но принципиально считают, что при выходном давлении меньше 4 атмосфер устройство для эксплуатации непригодно.

Если же целью ремонта будет попытка восстановить нормальную работу холодильника, оценивать состояние компрессора придется по косвенным приметам (шум, вибрация). По отзывам мастеров, две наиболее частые поломки:

  • неисправность электрооборудования, в том числе отказ пускозащитного реле;
  • заклинивание механической части компрессора (ротора его двигателя либо поршня в цилиндре насоса).

Систему проверяют отдельно на каждую из указанных проблем, чтобы понять, какая именно деталь требует ремонта или замены. Для этого понадобится напрямую запустить компрессор холодильника без реле.

Электрические схемы распространенных холодильников “Атлант”.

Сразу скажем, что представленные ниже схемы – типовые, по ним построены большинство бытовых агрегатов Стинол, Индезит, Норд и др. без системы no frost.

Принципиальная схема двухкамерного холодильника МХМ-268, МХМ-2706, МХМ-2712

Обозначения на эл. принципиальной схеме:

В – датчик-реле температуры ТАМ-133-1М-75;S – выключатель;E – лампа;М – компрессор;R – реле РТ;К – реле РКТ-2;С – конденсатор.

Схема работы холодильника МХМ-268:

Представленные на рисунках выше изделия имеют в своем составе один компрессор, работой которого управляет механический терморегулятор ТАМ-133-1М. С сетевой вилки (Х) через контакты 3, 4 термореле напряжение сети принимает схема компрессора холодильника, состоящая из пуско-защитного реле (К), одетого своими контактами на мотор-компрессор (М). Пуско защитный блок включает также тепловое реле (Т), отключающее пусковую обмотку двигателя после его запуска. После охлаждения до заданной температуры контакты 3-4 терморегулятора размыкаются и компрессор холодильника останавливается. Устройство и схема подключения реле холодильника и подробнее о работе РКТ можно узнать здесь, а о холодильных компрессорах Атлант здесь.

Обозначения на схеме:

A1 – блок индикации В4-01-4,8;B1 – датчик реле температуры ТАМ-133-1М-46;B2 – датчик реле температуры 145-2М-29;С – конденсатор;EL – лампа;К – реле РКТ-6;М – эл.двигатель компрессора;R1 – нагреватель замораживания;R2 – реле РТ;S1 – выключатель освещения;S2 – выключатель “замораживание”.

На электрической принципиальной схеме:

А1 – модуль индикации;А2 – модуль управления;С1,С2 – конденсатор;EL – лампа;К1, К2 – реле РКТ-5;М1, М2 – компрессоры;R1 – датчик ХК;R3 – датчик МК;R4, R5 – реле РТ;S1 – выключатель магнитный ВМ-4.

Схема электрическая холодильников МХМ-1801, 1804, 1805, 1806, 1817, 1818, 1833, 1834

На электрической схеме холодильника:

А2 – блок индикации В4-47-4,8;B1 – датчик реле температуры ТАМ-133-1М-47 (ХК);В2 – датчик реле температуры ТАМ-125-2,3 (МК);С1,С2 – конденсатор;EL – лампа;К1, К2 – реле РКТ-5;М1, М2 – компрессоры ХК и МК соответственно;R1, R2 – реле РТ;S1 – выключатель WP7.2.4,8;S2 – выключатель ВК-33Н.

Обозначения на эл. принципиальной схеме:

A – блок индикации В4-0,1-4,8;В – датчик-реле температуры 145-2М-1-1,0-4,8-9-А;С – Конденсатор К78-25-2в-450В-4мкФ±5%;К – Реле РКТ;М – Электродвигатель компрессора;P – Реле РТ;S1 – Выключатель ВК33Н

Электрооборудование холодильника

Холодильник состоит из компонентов, которые своей взаимосвязанной работой обеспечивают охлаждение внутренних его камер.

Электросхема холодильника включает следующее оборудование:

  1. Нагреватели электрические. С их помощью обогревается генератор в абсорбционных холодильниках, которые имеют специфическое применение. А также нагреватели требуются для обогрева испарителя при автоматическом удалении образовавшейся наледи. В некоторых моделях устройство используют для препятствия выпадения конденсата на дверном проёме морозильника.
  2. Электродвигатель, который приводит в действие компрессор.
  3. Контакты для соединения с проводкой компрессора и электромотора и непосредственно сама проводка устройства.
  4. Освещение внутри камеры.
  5. В устройствах с принудительной вентиляцией — система вентиляции и вентиляторы.

Но холодильники не работают в ручном режиме. Для их автономной работы без вмешательства человека по заданному алгоритму требуется автоматическое оборудование. Оно позволяет вести измерение параметров и исходя из них поддерживать оптимальную или заданную температуру.

К таким приборам относят:

  1. Датчики или реле температуры. Их ещё называют терморегуляторами. Данные устройства позволяют поддержать постоянную температуру в камерах.
  2. Автоматическое пусковое реле. Позволяет запускать электродвигатель.
  3. Защитное реле. Защищает обмотку электрометра компрессора от перегрузок электросети.
  4. Автоматические приборы для удаления ледяных наростов с испарителя.

https://youtube.com/watch?v=HJwFpG04Cjg

Устройство и принцип работы разных видов холодильников

Все холодильники имеют общий принцип работы, но, в зависимости от модели и используемой охлаждающей установки, особенности процесса поддержания низкой температуры в камере могут отличаться.

Однокамерные и двухкамерные холодильники

Однокамерные и двухкамерные холодильники работают примерно по тому же принципу. Главное отличие состоит в работе испарителей. Старые двухкамерные агрегаты оборудованы одним испарителем для обеих камер. В новых моделях есть испаритель в каждой камере, которые полностью изолированы друг от друга.

В однокамерных холодильниках испаритель размещен в верхней части рефрижератора, под которым располагается поддон. Его закрытие и открытие регулирует подачу холодного воздуха в основную холодильную камеру. Чтобы не допустить появление излишнего конденсата на стенках, в холодильнике предусмотрена капиллярная трубка.

В двухкамерных же холодильниках испарители выполняют роль разделительной перегородки теплоизоляции. В такой системе хладагент закачивается в испаритель через капиллярную трубку и передается во второй только в том случае, когда его температура падает ниже нуля. Когда второй испаритель тоже обмерзает, включается термореле, которое приостанавливает работу компрессора.

Компрессорные холодильники

Компрессорный холодильники работают на основе компрессорной системы. Это самый распространенный тип устройства холодильника. Они удобны в использовании и обслуживании, а также расходуют не так много электроэнергии.

Компрессорные холодильники, в основном, производят Atlant, Indesit и Stinol. Такие модели состоят из двух основных компонентов:

  • компрессор — мотор, который может быть инверторным или линейным. При его запуске фреон перемещается по трубкам системы, обеспечивая равномерное охлаждение основной и морозильной камер;
  • конденсатор — змеевидная система трубок, расположенная на задней внешней части корпуса холодильника, которая выводит в окружающую среду тепло, вырабатываемое компрессором;
  • хладагент — изобутан или фреон, который перемещается по системе холодильника, охлаждая ее;
  • вентиль для осуществления терморегуляции — поддерживает постоянное давление для равномерной циркуляции хладагента.

За счет этого приводится в действие компрессор, который сжимает фреон и создает определенное давление, необходимое для его передвижения по трубкам всей системы. При попадании в конденсатор, хладагент превращается в жидкость.

Далее хладагент выводится в фильтр-осушитель, очищается от влаги и проходит по трубкам капиллярной системы, снова попадая в испаритель. После этого компрессор снова начинает перегонку фреона и весь цикл повторяется заново. Когда температура достигнет нужной отметки, реле автоматически отключает двигатель.

Абсорбционные холодильники

Абсорбционные холодильники работают на основе циркуляции и испарения аммиака, который выступает в роли хладагента. В качестве абсорбента действует аммиачный раствор на воде.

При включении холодильного агрегата в генераторе производится нагрев рабочей жидкости (аммиачного раствора). Когда температура достигает отметки кипения, аммиак начинает превращаться в пар, который выводится в конденсатор.

Далее аммиак превращается в жидкость и попадает в испаритель, где смешивается с водородом. Резонанс давления приводит к испарению сжиженного аммиака, при котором выделяется тепло.

Аммиачный пар передается в адсорбер с очищенной водой. Полученный раствор поступает в генератор-кипятильник и цикл повторяется по новой, пока температура достигнет нужного уровня.

Холодильник с технологией «No Frost»

Холодильники с технологией No Frost (с англ. «без мороза»), позволяют эксплуатировать его без частых разморозок. Это возможно благодаря полному выводу влаги из холодильной системы, за счет чего в камере не образуется наледь.

Главный принцип технологии заключается в том, что после каждого полного цикла работы автоматически запускается режим оттаивания. Реле активирует испаритель, из-за чего лед начинает таять, а вся влага выводится наружу и полностью испаряется. В остальном, принцип работы холодильника такой же, как и в обычных моделях.

Так как в холодильнике с технологией No Frost не образуется лед, его можно размораживать только один-два раза в год, во время очистки и мытья. Основным недостатком при этом является увеличенное потребление электроэнергии за счет непрерывной работы вентилятора.

Видео-инструкция, как проверить компрессор холодильника

Знать, как проверить компрессор на холодильнике в теории – это хорошо, но также нужно видеть сам процесс. Для этого просмотрите это видео, где мастер подробно описывает проверку холодильника тестером и другими способами.

Теперь вы знаете, как проверить компрессор холодильники самостоятельно. У вас получится выполнить эту работу, если вы уже сталкивались с ремонтом электротехники и умеете пользоваться мультиметром. Не стоит браться за тестирование в том случае, если это ваш первый опыт. Правильным решением будет вызов профессионала, особенно если на холодильник действует гарантия.

Принцип работы

Принцип работы холодильника заключается в следующем:

  1. Тепловая энергия передается из камеры в окружающую среду.
  2. Холод концентрируется внутри корпуса.

Чтобы отобрать тепло, необходимо применить хладагент, который называется фреоном. Этот газообразный состав состоит из этана, хлора и фтора. Он может переходить в жидкое состояние и газообразное. Это случается при скачках давления.

Компрессор холодильника всасывает хладагент внутрь. В системе используется электрический двигатель, который запускает вращение поршня. Этот механизм вызывает сжатие газа.

Процесс разделен на 2 этапа:

  1. Изначально поршень движется в возвратном направлении, а когда он смещается, происходит открытие впускного клапана.
  2. Затем поршень движется в обратном направлении, сжимая газообразное вещество. Сжатый хладагент воздействует на пластину выпускного клапана, что приводит к резкому скачку давления. В результате газ нагревается до +100 °C, а клапан открывается и выпускает его наружу.

Подогретое вещество направляется в конденсатор, а затем передается в окружающую среду. При передаче тепла запускается конденсация газа, а фреон приобретает состояние жидкости.

Саморазмораживающийся

Модели с саморазмораживающейся функцией выполняют цикл разморозки в автоматическом режиме. Всего есть 2 типа таких систем:

  1. Капельная.
  2. Ветреная (No frost).

В оборудовании с капельной функцией испаритель размещается сзади аппарата. Когда устройство работает, сзади на стенке появляется иней. В процессе размораживания наледь перемещается по желобам в нижнюю секцию холодильника. По мере нагревания компрессора происходит испарение жидкости.

В моделях с такой системой воздух от испарителя передается внутрь камеры с помощью вентилятора. Затем он стекает по желобкам в специальный отсек.

Слово «ноу фрост» ничего не говорит для новичков. Поэтому при ознакомлении с принципом действия холодильника необходимо уточнить, как работает система No frost и что это такое.

Инверторный

Компрессорные установки в инверторных холодильниках выполняют аккумуляцию и преобразование постоянного тока в переменный с номинальным напряжением в 220 В. Принцип их действия заключается в плавном изменении оборотов двигательного вала.

Когда холодильник запускается, инвертор достигает требуемого количества оборотов для поддержания нормального температурного режима под корпусом. После этого оборудование переходит в стадию ожидания. По мере повышения температуры происходит срабатывание датчика, а скорость вращения растет.

Абсорбционный

Специфика работы абсорбционных моделей сводится к бесперебойной циркуляции и испарению фреона в жидком состоянии. Его роль выполняет аммиак, а в качестве поглотителя (абсорбента) используется водный аммиачный состав.

В системе охлаждения присутствует хромат натрия и водород. Первый обеспечивают защиту стенок от коррозийных процессов, а второй регулирует давление в системе.

Когда оборудование подключается к электроснабжению, кипятильник нагревает рабочий состав, размещенный в специальной емкости. После этого сжиженный хладагент передается испарителю и соединяется с водородом. Из-за разности давлений 2 составов аммиак испаряется.

Охлажденное вещество отнимает тепловую энергию извне.

Промышленные

Промышленное оборудование отличается от бытового показателями мощности и габаритами камер охлаждения. Производительность холодильников достигает нескольких десятков кВт, а рабочий температурный диапазон морозилок варьируется в пределах +5…-50 °C.

Промышленные агрегаты используются для эффективного охлаждения и глубокой заморозки продуктов. Объем камеры варьируется от 5 до 5 тыс. т. Основные сферы применения — предприятия по заготовке и переработке продуктов.

Основные параметры конденсаторов

Ёмкость конденсатора-характеризует энергию,которую способен накопить конденсатор,а также ток который он способен пропустить через себя. Измеряется в Фарадах с множительной приставкой (нано, микро и т.д.).

Самые используемые номиналы для рабочих и пусковых конденсаторов от 1 мкФ (μF) до 100 мкФ (μF).

Номинальное напряжение конденсатора- напряжение, при котором конденсатор способен надёжно и долговременно работать, сохраняя свои параметры.

Известные производители конденсаторов указывают на его корпусе напряжение и соответствующую ему гарантированную наработку в часах,например:

  • 400 В — 10000 часов
  • 450 В — 5000 часов
  • 500 В — 1000 часов

Принципиальная схема устройства холодильника

Ещё 30 – 40 лет назад бытовые холодильники имели довольно простое строение: мотор-компрессор запускался и отключался 2 – 4 устройствами, о применении электронных плат управления и речи быть не могло.

Современные модели имеют множество дополнительных опций, но принцип работы в целом остается неизменным.

В старых холодильниках всё дополнительное оборудование сводится к индикатору питания и лампочке освещения в холодильной камере, которая отключается кнопкой при закрытии двери

Терморегулятор – основной и единственный орган управления, которым пользователь может настроить работу старого холодильника, располагается обычно внутри холодильной камеры. Под силовым рычагом – крутящейся ручкой – скрыта пружина сильфона. Она сжимается, когда в камере холодно, тем самым размыкая электрическую цепь и отключая компрессор.

Как только температура поднимается, пружина распрямляется и вновь замыкает цепь. Ручка с указателями силы заморозки холодильника регулирует допустимый диапазон температур: максимальную, при которой компрессор запускается, и минимальную, при которой охлаждение приостанавливается.

Тепловое реле  выполняет защитную функцию: контролирует температуру двигателя, поэтому расположено непосредственно возле него, часто совмещено с пусковым реле. При превышении допустимых значений, а это может быть 80 градусов и более, биметаллическая пластина в реле изгибается и прерывает контакт.

Мотор не получит питания до тех пор, пока не остынет. Это защищает как от поломки компрессора вследствие перегрева, так и от пожара в доме.

Мотор-компрессор имеет 2 обмотки: рабочую и стартовую. Напряжение на рабочую обмотку подается напрямую после всех предыдущих реле, но этого недостаточно для запуска. Когда напряжение на рабочей обмотке повышается, срабатывает пусковое реле. Оно дает импульс на стартовую обмотку, и ротор начинает вращаться. В результате поршень сжимает и проталкивает по системе фреон.

Мотор-компрессор сжимает и перекачивает фреон по трубкам системы, что обеспечивает перенос тепла из камер холодильника наружу, охлаждение продуктов

В целом цикл работы холодильника можно описать следующим образом:

  1. Включение в сеть. Температура в камере высокая, контакты терморегулятора замкнуты, мотор запускается.
  2. Фреон в компрессоре сжимается, его температура повышается.
  3. Хладагент выталкивается в змеевик конденсатора, расположенный за спиной или в поддоне холодильника. Там он остывает, отдает тепло воздуху и переходит в жидкое состояние.
  4. Через осушитель фреон попадает в тонкую капиллярную трубку.
  5. Попадая в испаритель, расположенный внутри камеры холодильника, холодильный агент резко расширяется благодаря увеличению диаметра трубок и переходу в газообразное состояние. Полученный газ имеет температуру ниже -15 градусов, поглощает тепло из камер холодильника.
  6. Немного нагретый фреон поступает в компрессор, и всё начинается заново.
  7. Через некоторое время температура внутри холодильника достигает заданных значений, контакты терморегулятора размыкаются, мотор и движение фреона останавливаются.
  8. Под воздействием температуры в помещении, от новых тёплых продуктов в камере и открывания двери, температура в камере повышается, терморегулятор замыкает контакты и начинается новый цикл охлаждения.

Эта схема в точности описывает работу старых однокамерных холодильников, в которых один испаритель.

Однокамерные холодильники имеют небольшую морозильную камеру, не отделенную теплоизоляцией от основной, одну дверцу. Продукты в передней части морозилки могут подтаивать

Как правило, испаритель является корпусом морозилки в верхней части агрегата, не изолированный от холодильной камеры. Отличия в устройстве других моделей рассмотрим далее.

Как устроен холодильник

Любой современный холодильный агрегат состоит из следующих частей:

  • поршневого компрессора, который обеспечивает циркуляцию хладагента;
  • испарителя расположенного внутри холодильника, забирающего тепло из камеры;
  • конденсатора (охладителя) размещённого на задней или боковой стенке агрегата, отводящего тепло в окружающую среду;
  • терморегулирующего вентиля, поддерживающего давление на необходимом уровне;
  • хладагента (как правило, фреон), который циркулирует внутри трубопроводов, перенося тепло от испарителя к охладителю.

Схема холодильника ATLANT МХМ 1709-00.

Устройство двухкамерного холодильника Атлант.

Схема монтажа холодильника

Перед покупкой подходящей модели встроенного холодильного агрегата потребуется знать его точные размеры, под которыми понимается не только высота, но также ширина и глубина. Для этого сначала следует определиться с образцом мебели, идеально подходящим для этих целей.

У разных производителей можно найти высоту и 70 см, и 80 см, и 120 см, и 190 см — не торопитесь с выбором, обдумайте, следует ли покупать холодильник с самым большим объемом, если у вас дома не принято готовить впрок и запасаться соленьями-вареньями? Может, в таком случае, для приготовления самого свежего питания подойдет модель стандартной высоты (полтора метра)?

Чтобы подобрать холодильник по размерам правильно, нужно отталкиваться от своих потребностей, а также от габаритов кухни в целом, при этом учитывая размеры той мебели, куда этот холодильник будет встраиваться. К примеру, для установки под столешницей могут подойти однокамерные холодильники высотой около 800 мм, а их глубина, в принципе, стандартная — 56-57 см. Ширина также не слишком отличается разнообразием. Обычно производитель предлагает холодильники по 500-600 мм шириной. А вместительность нужно подбирать уже только в соответствии с аппетитом. В принципе, если обходиться без полуфабрикатов, то хватит и минимального холодильника — для двоих человек достаточным может быть объем 130 л, а для семьи из трёх-четырёх человек — в районе 160-180 литров.

У разных производителей можно найти высоту и 70 см, и 80 см, и 120 см, и 190 см — не торопитесь с выбором, обдумайте, следует ли покупать холодильник с самым большим объемом, если у вас дома не принято готовить впрок и запасаться соленьями-вареньями? Может, в таком случае, для приготовления самого свежего питания подойдет модель стандартной высоты (полтора метра).

Поделитесь в социальных сетях:FacebookX
Напишите комментарий